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Alrcraft Maintenance Environment

J AIrME (hour-based discrete time system)
* Heterogeneous aircraft, {p;}
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« Model parameters hidden from scheduling policies

aircraft maintenance task
« Duration and cost generated on-the-fly

d Sample flying operations based on usage rate
 Different planes earn different hourly income
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* Decision generation schemes: Full, Skip, _Single -

Hand-crafted heuristics, Model-based planning

* Machine learning-based methods

Dataset: small, medium and large AirME Instances

d Heterogeneous Graph Representation -

Crew

Joint learning the problem
representation and the policy

Model entities In the

environment repaired_by

Evaluation on O1, O2, O3 using
M1: normalized objective value

« M2: % improvement over the Corrective Scheduler

] Ablation studies

Table |. Evaluation results on O1: profit

* Planes, crews Methods Small Medium Large
repairing M1 M2 (%) M1 M2 (%) M1 M2 (%)
» Model RL components Random 0522+0.025 -287+5.65 0532+0021 265422 0533=0016 -223=351
| Corrective  0.539+0.023 00200 05470016 00+00 05460016  0.0=0.0
. . in Condition-based ~ 0.656 +0.050 217641 0.661 £0.041 208+587 0.648%0.051 18.6+7.03
» State, decisions Periodic ~ 0599+0051 11.1£696 0.598+0047 938+7.00 0.587 0.048 7.52+ 6.83
- Model-based ~ 0.669 £0.052 24.0+6.99 0.671+0.044 22.8+645 0.658+0.054 20.5+ 7.68
J A novel heterogen eous DeepRM 0.533+0.015 -0.88+257 0538+0011 -1.47=1.77 0539+0.013 -L.I1%0097
_ Decima 0.651 +0.021 211642 0.660+0.017 209+449 0.663=0.014 21.6+45I
grap h attention | ayer o HetGPO-Single  0.680%0.012  264+4.32 06760011 237%3.17 0666 +0011 223%3.77
HetGPO-Skip  0.695+0.010 29.14.09 0.697 £0.009 27.5+2.70 0.695 % 0.008 27.5 + 2.72
ST : HetGPO-Full  0.693+0.011 288401 0.694+0.009 27.1+2.62 0.693+0.008 27.1+2.68
 Building block of our schedullng e,
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Fig. 2. Metagraph

Computation Step
1) per-edge-type message passing
2)

ner-node-type feature reduction

Jses multi-head attention
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dHetGPO outperforms both heuristics and learning-

based counterparts

d Future work Iinvolves applying HetGPO to a broader

class of stochastic resource optimization problems
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