STOCHASTIC RESOURCE OPTIMIZATION OVER HETEROGENEOUS GRAPH NEURAL NETWORKS FOR FAILURE-PREDICTIVE MAINTENANCE SCHEDULING

ZHEYUAN WANG*, MATTHEW GOMBOLAY* *CORE Robotics Lab, School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA https://core-robotics.gatech.edu/

Motivation	
Resource optimization for predictive	Maintenanc Crews
maintenance requires inferring and	
models and dynamically allocating repair	Hour-base
resources.	Opera
Predictive maintenance scheduling is	Aircraft Flee
typically performed with ad hoc, hand- crafted bouristics and manual schoduling	Type 1 Type 2
by human experts, which is time-	AirME
consuming, laborious and hard to scale	Sche
Recent advances in AI have leveraged	
deep neural networks to solve operations	
static. deterministic setting.	
Aircraft Maintenance Environm	ont
$\Box Air M \Box (bour bood disorate time evoters)$	
AINVE (nour-based discrete time system)	
 Hereingeneous aircrait, {p_i} Homogeneous maintenance crews {c.} 	
• A maintenance decision $d = \langle n_i c_i \rangle$	
\square Hybrid probabilistic failure model	
Model component/part failure using Weibull	
distributions based on aircraft usage	
$p(x;\lambda,k) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} e^{-(x/\lambda)^k}, x \ge 0$	
 Model parameters hidden from scheduling parameters 	olicies
Stochastic aircraft maintenance task	
 Duration and cost generated on-the-fly 	
Sample flying operations based on usage	rate
 Different planes earn different hourly income 	
Scheduling objectives	
 O1: overall profit; O2: revenue only; O3: fle availability 	et

DPOMDP formulation

E-mail: {pjohnwang,mgombolay3}@gatech.edu

$$p_{\theta}(u_t|o_t) = \prod_{i=1}^{n} p_{\theta}(d_i|o_t, d_{1:})$$

