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Learning Scheduling Policies for Multi-Robot
Coordination with Graph Attention Networks

Zheyuan Wang1 and Matthew Gombolay1

Abstract—Increasing interest in integrating advanced robotics
within manufacturing has spurred a renewed concentration in
developing real-time scheduling solutions to coordinate human-
robot collaboration in this environment. Traditionally, the prob-
lem of scheduling agents to complete tasks with temporal and spa-
tial constraints has been approached either with exact algorithms,
which are computationally intractable for large-scale, dynamic
coordination, or approximate methods that require domain ex-
perts to craft heuristics for each application. We seek to overcome
the limitations of these conventional methods by developing a
novel graph attention network-based scheduler to automatically
learn features of scheduling problems towards generating high-
quality solutions. To learn effective policies for combinatorial
optimization problems, we combine imitation learning, which
makes use of expert demonstration on small problems, with
graph neural networks, in a non-parametric framework, to allow
for fast, near-optimal scheduling of robot teams with various
sizes, while generalizing to large, unseen problems. Experimental
results showed that our network-based policy was able to find
high-quality solutions for ∼90% of the testing problems involving
scheduling 2–5 robots and up to 100 tasks, which significantly
outperforms prior state-of-the-art, approximate methods. Those
results were achieved with affordable computation cost and up
to 100× less computation time compared to exact solvers.

Index Terms—Planning, scheduling and coordination, imita-
tion learning, multi-robot systems.

I. INTRODUCTION

ADVANCES in robotic technology are enabling the in-
troduction of mobile robots into manufacturing envi-

ronments alongside human workers. By removing the cage
around traditional robot platforms and integrating dynamic,
final assembly operations with human-robot teams, manufac-
turers can see improvements in reducing a factory’s footprint
and environmental costs, as well as increased productivity [1].
For human workspaces associated with final assembly, tasks
need to be quickly allocated and sequenced (i.e., scheduled)
among a set of robotic agents to achieve a high-quality
schedule with respect to the application-specific objective
function while satisfying the temporal constraints (i.e., upper
and lower bound deadline, wait, and task duration constraints),
as well as spatial constraints on agent proximity for safe and
efficient collaboration with human workers. The problem of
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resource optimization is made difficult by the inter-coupled
constraints requiring a joint schedule rather than allowing each
agent to compute their work plans independently. Furthermore,
scheduling decisions must be generated quickly and effectively
in response to dynamic disturbances.

Conventional approaches to scheduling typically involve
formulating the problem as a mathematical program and lever-
aging commercial solvers or developing custom-made approx-
imate and meta-heuristic techniques. Exact algorithms aim to
find the optimal schedule based on enumeration or branch-and-
bound, making them computationally expensive and unable to
scale to large, real-time scheduling. Exact methods often rely
on hand-crafted, “warm-start” heuristics unique to each appli-
cation. Alternatively, heuristic approaches are lightweight and
often effective; however, designing application-specific heuris-
tics requires extracting and encoding domain-expert knowl-
edge through interviews and trial-and-error-based research,
a process which leaves much to be desired. Furthermore,
accurately and efficiently extracting this knowledge remains
an open problem [2].

To overcome the limitations of prior work, we build on
promising developments in deep-learning-based architectures
(i.e., graph neural networks) to learn heuristics for com-
binatorial problems. Analogous to the convolutional neural
networks for feature-learning in images, graph neural networks
are able to hierarchically learn high-level representations of
graph structures through convolutions and backpropagation.
Yet, these approaches have only been developed for simpler
scheduling problems, e.g. the traveling salesman problem
(TSP) [3], [4], in which the graph is fully apparent and
edges are undirected. Conversely, multi-robot scheduling is
a fundamentally different problem in which the graphical
structure is a directed, acyclic graph with latent, disjointed
temporal and spatial constraints that must be inferred.

In this paper, we develop a novel model, called RoboGNN
scheduler, which is based on graph attention network
(GAT) [5], to learn scheduling policies that reason about the
underlying simple temporal network (STN) structure [6] and
auxiliary constraints for multi-robot allocation and sequencing.
We formulate scheduling as a sequential decision-making
problem, in which individual robots’ schedules are collectively,
sequentially constructed in a rollout fashion. Our RoboGNN
scheduler is non-parametric in both the number of tasks and
the number of robots, meaning that the model can learn
a policy from problem formulations of one size while still
being able to construct schedules for task sets much larger
than those seen during training. This non-parametricity is
relatively unique in machine learning but is fundamental to
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Fig. 1. The figure depicts the proposed framework, which incorporates graph attention networks and imitation learning for multi-robot scheduling. The
RoboGNN scheduler uses a graph attention network, with robot-specific input node features constructed from partial schedules, to extract high level robot
embeddings, and a separate Q network to evaluate discounted future rewards of state-action pairs for greedy schedule generation. The scheduler is trained
with transitions generated from expert schedules using an imitation loss.

scheduling problems as the needs of the manufacturer evolve
minute by minute. A valuable benefit is that our approach
can leverage imitation learning from small-scale problems
in which supervised examples can be generated with exact
solution methods, without the need for application-specific
warm-starts, and still be applied on large-scale problems
that are computationally intractable for exact approaches. We
combine imitation learning with graph neural networks to
learn a heuristic policy for scheduling, allowing for fast, near-
optimal scheduling of robot teams. The combined framework
is illustrated in Fig. 1. We demonstrate that our approach is
able to find high-quality solutions for ∼90% of the testing
problems involving scheduling two to five robots and up
to 100 tasks with proximity constraints, which significantly
outperforms prior state-of-the-art method. Moreover, those
results are achieved with affordable computation cost and up
to 100× faster computation time versus exact solvers.

II. RELATED WORK
Task assignment and scheduling for multi-robot teams is

an important class of problems with applications to manu-
facturing, warehouse automation, and pickup-and-delivery [7].
Our focus is on the single-task robots (ST), single-robot tasks
(SR), time-extended assignment (TA) category with cross-
schedule dependencies [XD] under the iTax taxonomy [8],
modeling multi-robot construction of a large workpiece, e.g.
fuselage. Formulating the problem into a mixed-integer linear
program (MILP) yields MILP-based solution techniques with
exponential complexity, leading to intractability for factory
operations [9]. One popular way to accelerate the computa-
tion is to combine MILP and constraint programming (CP)
methods into a hybrid algorithm using decomposition [10], but
the performance may be limited by the decomposition quality.
And it does not scale beyond a few agents and dozens of tasks.

Other hybrid approaches integrate heuristic schedulers
within the MILP solver to achieve better scalability charac-
teristics. Chen et al. incorporated depth-first search (DFS)

with heuristic scheduling [11]. Additional approaches perform
cooperative scheduling by incorporating Tabu search within
an MILP solver [12] or by applying heuristics to abstract the
problem to groupings of agents [13]. Researchers have also
sought to apply metaheuristic techniques, including simulated
annealing (SA) [14] and genetic algorithms (GAs) [15].

Some have pursued heuristic-learning for solving schedul-
ing problems with approaches using policy [16] and Q-
learning [17], [18]. Yet, the common limiting factor of these
methods is that they are either not multi-agent or they do
not handle the robust set of temporal and spatial constraints
that we consider (i.e., cross-schedule dependences [XD]).
Moreover, these methods depend on customized features to
achieve satisfying results.

To address these limitations, we consider recent advances
in graph neural networks (GNN) that extend deep neural
networks to handle arbitrarily-structured data [21]. Recently,
GNNs have been used to solve combinatorial optimization
problems, including the traveling salesman problem (TSP) [3],
[4], and other complex applications [19], [20]. In these prior
works, the node embeddings obtained from GNNs are com-
bined with machine learning algorithms to construct solu-
tions. Table I summarizes recent work in this direction. Ours
is the only that considers graphs with directed, weighted
edges, which enables us to consider multi-robot coordination
problems under temporal and spatial constraints, which use
inherently directed, acyclic graphs often modeled as simple
temporal networks (STNs) [22], [23], [24], [25]. To the best
of our knowledge, we are the first to leverage GNNs in solving
STN-based scheduling problems.

III. PROBLEM STATEMENT

We consider the problem of coordinating a multi-robot team
in the same space, with both temporal and resource/location
constraints. We describe its components, under the XD (ST-
SR-TA) category of the widely accepted taxonomy proposed
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TABLE I
RECENT WORK ON GRAPH NEURAL NETWORKS FOR SOLVING COMBINATORIAL OPTIMIZATION PROBLEMS

Article Graph Structure
(edge type)

Attention
Mechanism Learning Method Appication Domain

Khalil et al., 2017 [3] Undirected, weighted No Q-learning Minimum Vertex Cover, Maximum Cut and TSP

Kool et al., 2019 [4] Undirected, unweighted Yes REINFORCE TSP, Vehicle Routing Problem, Orienteering Problem,
Prize Collecting TSP

Mao et al., 2019 [19] Directed, unweighted No REINFORCE Data processing cluster scheduling

Gasse et al., 2019 [20] Undirected, weighted No Behavioral cloning
Four NP-hard problem benchmarks: set covering instances,
combinatorial auction instances, capacitated facility location
instances and maximum independent set instances

Ours Directed, weighted Yes Imitation learning Multi-robot coordination under temporal and spatial constraints

in [8], as a six-tuple <r, τ ,d,w,Loc, z>. r is the set of robot
agents that we assume are homogeneous in task completion. τ
is the set of tasks to be performed. Each task τi takes a certain
amount of time duri for a robot to complete, and its scheduled
start and finish time are denoted as si and fi, respectively (e.g.,
“task τi starts at 00:30, ends at 00:40, requiring 10 minutes”
can be denoted as si = 30, fi = 40, duri = 10). We introduce
s0 as the time origin and f0 as the time point when all tasks
are completed, so that the schedule has a common start and
end point. d is the set of deadline constraints. di ∈ d specifies
the time point before which task τi has to be completed. w
is the set of wait constraints. wi,j ∈ w specifies the wait
time between task τi and task τj (e.g., “task τi should wait at
least 25 minutes after task τj finishes” means si ≥ fj + 25).
Loc is the set of all task locations. At most, one task can be
performed at each location at the same time. Finally, z is an
objective function to minimize that includes the makespan and
possibly other application-specific terms.

A solution to the problem consists of an assignment of
tasks to agents and a schedule for each agent’s tasks such
that all constraints are satisfied, and the objective function
is minimized. We also include the mathematical program
(MP) formation of our problem in (1)-(9). We consider a
generic objective function, as application-specific goals vary.
In Section VI, we consider minimizing the makespan (i.e.,
overall process duration), which would be z = maxi fi.

Here we introduce two types of binary decision variables:
1) Ar,i = 1 for the assignment of robot r to task τi and 2) Xi,j

= 1 denotes task τi finishes before task τj starts. Lsame is
the set of task pairs (τi, τj) that use the same location and is
derived from Loc. We also have continuous decision variables
si, fi ∈ [0,∞) corresponding to the start and finish times of
task τi, respectively. Equation (2) ensures that each task is
assigned to only one agent. Equations (3)-(5) ensure that all
the temporal constraints are met. Equations (6)-(7) ensure that
robots can only perform one task at a time. Equations (8)-(9)
account for task locations that can only be occupied by one
robot at a time. In Section VI, we employ an exact benchmark
(i.e., a mathematical program solver) to solve a linearized,
mixed-integer form of these equations on small-scale problems
to serve as expert demonstrations.

min(z) (1)

∑
r∈r

Ar,i = 1,∀τi ∈ τ (2)

fi − si = duri,∀τi ∈ τ (3)
fi − s0 ≤ di,∀di ∈ d (4)

si − fj ≥ wi,j ,∀wi,j ∈ w (5)
(sj − fi)Ar,iAr,jXi,j ≥ 0,∀τi, τj ∈ τ ,∀r ∈ r (6)

(si − fj)Ar,iAr,j(1−Xi,j) ≥ 0,∀τi, τj ∈ τ ,∀r ∈ r (7)
(sj − fi)Xi,j ≥ 0,∀(τi, τj) ∈ Lsame (8)

(si − fj)(1−Xi,j) ≥ 0,∀(τi, τj) ∈ Lsame (9)
Ar,i ∈ {0, 1}, Xi,j ∈ {0, 1}, si, fi ∈ [0,∞)

IV. REPRESENTATION: GRAPH NETWORKS

Multi-robot task allocation and scheduling problems have
been commonly modeled as STNs, because the consistency
of the upper and lower bound temporal constraints can be
efficiently verified in polynomial time. However, as we de-
velop multiple agents, physical constraints, etc., we also have
latent disjunctive variables that augment the graph to account
for each agent being able to perform only one task at a time
and for only one robot to occupy a work location at a time.
This scheduling scenario is known as the Disjunctive Temporal
Problem [26]. GNNs are an ideal choice for reasoning about
STNs given their graphical nature. However we must expand
on prior work to handle both the directed nature of these
graphs, as well as the disjunctive component from multi-robot
coordination in time and space. These extensions are a key
contribution of this paper.

Modern GNNs capture the dependence of graphs via
message-passing between the nodes, in which each node
aggregates feature vectors of its neighbors from previous
layers to compute its new feature vector. After k layers of
aggregation, a node v’s representation captures the structural
information within the nodes that are reachable from v in k
hops or fewer. Systems based on GNNs have demonstrated
ground-breaking performance on tasks such as node classi-
fication, link prediction, and clustering [21]. Here, we make
use of the graph attention layer (GAT) proposed in [5], which
is a variant of a graph convolutional layer that introduces an
attention mechanism to improve generalizability and modify
its structure to make it suitable for representing an STN.

STN Preprocessing – In an STN, each task τi is represented
by two event nodes: its start time node si and finish time
node fi. An example of an STN consisting of 3 tasks is
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Fig. 2. Fig. 2(a) depicts an STN with start and finish nodes for three tasks, as well as placeholder start and finish nodes, s0 and f0. Task 1 has a deadline
constraint and there is a wait constraint between task 3 and task 2. Fig. 2(b) depicts the forward pass of the adapted graph attention layer (left-hand side),
which consists of two phases: 1) Message passing: each node receives features of its neighbor nodes and the corresponding edge weights; 2) Feature update:
neighbor features are aggregated using attention coefficients; the right-hand side illustrates how attention coefficients are calculated.

shown in Fig. 2(a). For preprocessing purpose, we run Floyd
Warshall’s all-pairs-shortest-paths algorithm on the original
STN to find the minimum distance graph [27]. Because in our
problems, task duration is deterministic, it is possible to further
remove the finish nodes fi (except f0) from the distance
graph without losing information on the temporal constraints
describing relations between each task. The resulted distance
graph, which consists of only half the nodes of the original
STN, is used by the graph attention network to learn high level
robot embeddings.

Robot-Specific Node Features – While the graph attention
network uses the same simplified distance graph to calculate
the embeddings of each robot given a problem state, the
difference lies in the set of input node features each robot uses,
which we denote as robot-specific node features. Given all the
partial schedules at the current step, we generate the initial
input features of each node, with respect to a particular robot,
as follows. The first 3 dimensions are the binary encoding
denoting whether the corresponding task is scheduled to this
robot, to other robots, or not scheduled. For example, [1 0
0] indicates the task is assigned to this robot, and [0 1 0]
indicates the task is assgined to one of other robots. We use
[1 1 0] as the first 3 features for the placeholder start and finish
nodes of the entire schedule, so and fo, respectively. The next
dimension is the task duration. The next M dimensions are an
one hot encoding of the location the task uses, where M is
the number of locations. Thus, the input feature for each node
is an (M+4)-dimensional vector. This set of input features is
more expressive than that of prior approaches addressing the
simpler TSP [3], [4] that only considered the (x,y) position of
each node.

Structure Adaptation – The original graph attention net-
work [5] is only able to incorporate undirected, unweighted
graphs, yielding that model insufficient for scheduling prob-
lems in which temporal constraints are represented by the
direction and weight of the edge between the two corre-
sponding event nodes. As such, we make two adaptations for
the message passing and feature update phases as shown in
Fig. 2(b): 1) The message passing follows the same direction
of the edge (i.e., only the incoming neighbors of a node are

considered); 2) Edge information is also aggregated when
updating the node feature, which is done by adding a fully-
connected layer inside each GAT layer that transforms the edge
weight edge into the same dimension as the node feature using
We. The output node feature ~h′i is updated by (10), where
N(i) is the set of neighbors of node i, W is the weight matrix
applied to every node, ~hj is the node feature from the previous
layer, and αij are the attention coefficients. To stabilize the
learning process, we utilize multi-head attention [5], consisting
of K independent GAT layers computing nodes features in
parallel and concatenating those features as the output.

~h′i = ReLU
( ∑
j∈N(i)

αij(W~hj +Weedgeji)
)

(10)

Attention Coefficients – The GAT layer computes the fea-
ture embedding for each node by weighting neighbor features
from the previous layer with feature-dependent and structure-
free normalization, which makes the network non-parametric
in the number of tasks. The pair-wise normalized attention
coefficients are computed as shown in Fig. 2(b) using (11),
where ~a is the learnable weight, || represents concatenation,
and σ() is the LeakyReLU nonlinearity (with a negative input
slope of 0.2). Softmax function is used to normalize the
coefficients across all choices of j.

αij = softmaxj

(
σ
(
~aT
[
W~hi

∥∥∥W~hj

∥∥∥Weedgeji

]))
(11)

Given an STN and a set of robot-specific node features,
the graph attention network, constructed by stacking several
GAT layers, outputs the embeddings of each node. Then the
embedding of the corresponding robot is obtained by averaging
over all node embeddings.

V. LEARNING SCHEDULING POLICIES

We first formulate scheduling as a sequential decision-
making problem, in which individual robots’ schedules are
collectively, sequentially constructed in a rollout fashion. At
each decision step, the policy picks a robot-unscheduled
task pair and assigns that unscheduled task to the end of
that robot’s schedule. This step repeats until all tasks are
scheduled. Next, we formalize the problem of constructing
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the schedule as a Markov decision process (MDP) using a
five-tuple <xt, u, T,R, γ>that includes:

• States: As shown in Fig. 1, the problem state xt at step
t consists of the STN encoding the temporal constraints,
all robots’ partial schedules constructed so far, and the
task location list. As both location information and partial
schedules are included as robot-specific node features, we
approximate state embedding, hx, by averaging over all
robot embeddings.

• Actions: Action u = <τi, rj> implies appending task τi
into the partial schedule of robot rj , where τi is from the
set of unscheduled tasks. The action embedding, hu, is
approximated by the node embedding of start time node
si of τi, calculated with robot-specific node features with
respect to rj .

• Transitions T : Transitions correspond to adding the edges
associated with the action into the STN and updating
the partial schedules. In the MP formulation, when u
= <τi, rj> is taken, besides setting Ar,i = 1, we add
the following two terms before updating the equations:
1) si ≤ sk,∀τk ∈ {unscheduled}; 2) Xi,m = 1,∀τm ∈
{unscheduled|(τi, τm) ∈ Lsame}.

• Rewards R: The immediate reward of a state-action pair
is defined as the change in makespan of all the scheduled
tasks after taking the action. As such, the cumulative re-
ward of the whole schedule generation process equals the
final makespan of the problem (when feasible solutions
are found). We divide the change by a discount factor
D > 1 if the next state is not a termination state. The
reward is multiplied by -1.0, as we are minimizing the
total makespan. A large negative reward Minf is returned
if the action results in an infeasible schedule in the next
state. As a result, the goal of the policy is learning to
construct the optimal schedule.

• Discount factor γ.

We aim to learn a policy that schedules tasks and agents
following the decision-making process. To enable imitation
learning with expert demonstrations, we define an evaluation
function, Q(xt, ut), that calculates the total discounted reward
of taking action ut at step t. Then, our goal is to approximate
the evaluation function with a neural network Q̂θ parameter-
ized by weights θ. This function approximator, as show in Fig.
1 under the name “Q network”, consists of two fully-connected
layers. It takes as input the concatenation of state embedding
hx and action embedding hu and outputs a score estimating
the total rewards of performing action u. As a result, we obtain
a greedy policy π := argmaxuQ̂θ(hx, hu) that selects a task
τi and a robot rj at each step to maximize the Q value with
corresponding action.

Because we are dealing with homogeneous robots, and the
objective is minimizing makespan, we modify the schedule
generation process in an opportunistic manner, which uses
time-based rollout, to avoid possible delay among different
robots’ schedules. More specifically, starting from t = 0 (here
t refers to time points instead of decision steps), at each
time step, the policy first collects all the available robots not
working on a task into a set ravail = {rj |rj is available}.

Then, ∀rj ∈ ravail, the policy tries to assign τi using
τ := argmaxτ Q̂θ(hx, hu)|r=rj .

A. Imitation Learning

Although obtaining optimal solutions of large-scale schedul-
ing problems is computationally intractable, it is practical to
optimally solve smaller-scale problems with exact methods.
Furthermore, we can use these exact methods to automatically
generate application-specific examples for training an imitation
learning algorithm without the need for the tedious, non-trivial
task of developing application-specific heuristics to warm-start
the solver. Finally, we typically have access to high-quality,
manually-generated schedules from human experts that cur-
rently manage the logistics in manufacturing environments. We
believe that exploiting such expert data to train the scheduling
policy can greatly accelerate the learning process [28].

We aim to leverage such data by training the network
on expert dataset Dex that contains schedules either from
exact solution methods or the domain experts. For each expert
solution, we arrange the scheduled tasks by task start time in
ascending order and decompose them into state-action pairs
following our schedule generation process. For each transition,
we directly calculate the total reward from current step t

until termination step n using R
(n)
t =

∑n−t
k=0 γ

kRt+k and
regress Q̂θ towards this value as shown in (12), where the
supervised learning loss, Lex, is defined as the Euclidean
distance between the R(n)

t and our current estimate based on
state embedding hx and embedding of the action selected by
the expert hu,ex.

Lex =
∥∥∥Q̂θ(hx, hu,ex)−R(n)

t

∥∥∥2 (12)

To fully exploit the expert data, we ground the Q values of
actions that are not selected by the expert to a value below
R

(n)
t using the loss shown in (13), where hu,alt is the action

embedding associated with alternate actions not chosen by the
expert, qo is a positive constant used as an offset, and Nalt is
the number of alternate actions at step t.

Lalt =
1

Nalt

∑∥∥∥Q̂θ(hx, hu,alt)
−min(Q̂θ(hx, hu,alt), R

(n)
t − qo)

∥∥∥2 (13)

Consequently, the gradient propagates through all the un-
selected actions that have Q values higher than R

(n)
t − qo.

We select qo empirically during training. Note the difference
from [28] in that they only train on the unselected action with
the max Q value. Combing (12) and (13), we calculate the
total loss via (14), where L2 is the L2 regularization term
on the network weights, and λ1, λ2 are weighting parameters
assigned to different loss terms empirically.

Lsup = Lex + λ1Lalt + λ2L2 (14)

VI. EXPERIMENTAL RESULTS
We evaluate the performance of our model on randomly-

generated problems simulating multi-agent construction of a
large workpiece, e.g. an airplane fuselage. We generate prob-
lems involving a team of robots (team size ranging from two to
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(a) (b) (c)

Fig. 3. Proportion of problems solved for multi-robot scheduling: (a) small problems (16–20 tasks); (b) medium problems (40–50 tasks); (c) large problems
(80–100 tasks). Results are grouped in number of robots. Mean and standard deviation of computation times (in parenthesis) for each method is shown above
each group’s bar.

(a) (b) (c)

Fig. 4. Normalized makespan score for multi-robot scheduling: (a) small problems (16–20 tasks); (b) medium problems (40–50 tasks); (c) large problems
(80–100 tasks). Results are grouped in number of robots. A smaller (normalized) makespan is better.

five) in different scales: small (16–20 tasks), medium (40–50
tasks) and large (80–100 tasks), with both temporal constraints
and proximity/location constraints (i.e., no two robots can be
in the same location at the same time). For each problem, team
size is randomly selected from interval [2, 5]. Task duration is
generated from a uniform distribution in the interval [1, 10].
In keeping with distributions typically found in manufacturing
environments, approximately 25% of the tasks have absolute
deadlines drawn from a uniform distribution in the interval
[1, 3T ], where T is the number of total tasks. Approximately
25% of the tasks have wait constraints; the duration of non-
zero wait constraints is drawn from a uniform distribution in
the interval [1, 10]. We set the number of locations to be 5,
and each task’s location is picked randomly. For small and
medium problems, we generated 1,000 testing problems. For
large problems, we generated 100 testing problems. To train
the RoboGNN scheduler, we generated another 1,000 small
problems. We ran Gurobi, a commercial optimization solver
widely used for mixed integer linear programming (v8.1), with
a cutoff time of 15 minutes on those problems to serve as exact
baselines for testing set and expert demonstrations for training
set. This resulted in a total of 17,657 transitions for training.
For large problems, Gurobi cutoff time was 1 hour.

Model Details – Our code implementation uses py-
Torch [29], and the graph neural networks are built upon Deep
Graph Library (https://www.dgl.ai). We apply a three-layer
GAT to learn node features. Each layer uses 8 attention heads
computing 64 features. The last GAT layer uses averaging
while the first two use concatenation to aggregate the features
from each head. The Q network uses two fully-connected
layers with a hidden dimension of 64. We set γ = 0.99
and use Adam optimizer [30] through training. Imitation

learning uses λ1 = 0.9, and λ2 = 0.1. We tested learning
rates lr from {10−2, 10−3, 10−4}, qo from {1, 3, 5}, and
found the combination of lr = 10−3 and qo = 3 achieved
the best performance on test set of small problems. Thus we
picked them to report the evaluation results. Both training and
evaluation were conducted on a Quadro RTX 8000 GPU.

Benchmarks – We benchmark our trained RoboGNN
scheduler against the following methods.
• Earliest Deadline First (EDF) – a ubiquitous heuristic

algorithm [31] that assigns the available task with the
earliest deadline to the first available worker.

• Tercio – the state-of-the-art scheduling algorithm for
this problem domain [25]. Tercio combines mathematical
optimization for task allocation and analytical sequencing
test for temporospatial feasibility.

• Gurobi – a commercial optimization solver from Gurobi
Optimization. Results from Gurobi v8.1 are the exact
baseline.

A. Proportion of Problems Solved

The RoboGNN scheduler was trained on small problems
and the same model was evaluated on all problem scales. We
evaluated our model in terms of proportion of problems solved
and compared it with other methods, as shown in Fig. 3. We
also reported mean and standard deviation of the computation
time for different methods above corresponding bars, based
upon the problems solved by each method.

From this figure, we can see that the RoboGNN scheduler
found considerably more feasible solutions than both EDF
and Tercio across all team sizes. Our trained policy showed
consistently high-performance across different problem sizes
(91.5% solved for small problems, 89.3% solved for medium
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problems, and 91.0% solved for large problems), while the
performance of EDF and Tercio decreased precipitously when
the number of tasks increased (e.g., proportion of problems
solved dropped from 62.0% on small problems to 27.7% on
medium problems for Tercio). Moreover, EDF failed to solve
any large problems for 2-robot, 3-robot and 4-robot teams, as
depicted by zero-height bars in Fig. 3(c). The same is true for
Tercio in large 2-robot problems.

As two-robot team imposes a smaller number of robot-
related constraints than other team sizes, it took Gurobi longer
to find solutions (Fig. 3(a)), and for large-scale problems,
this resulted in less feasible solutions within cutoff time (Fig.
4(c)). Overall, for large problems, Gurobi only solved 77.0%
problems, and was outperformed by RoboGNN on 2-robot
and 3-robot cases. As problem scale increased, the runtime
of RoboGNN increased in a faster manner than Tercio, but
was still ∼ 10x faster than Gurobi, which is a favorable trade-
off considering Tercio’s poorer performance in the number of
problems solved, as shown in Fig. 3.

Considering that we only used expert data on small prob-
lems during training, this positive result provides strong evi-
dence that our framework is able to transfer knowledge learned
on small problems to help solve larger problems.

B. Normalized Makespan

To compare the quality of solutions found by different
methods, we reported results evaluated on another metric:
normalized makespan, where the makespan was normalized
to the one found by the exact method, Gurobi.

Fig. 4 showed the average makespan score, normalized to
the value found by Gurobi, of our approach and other baseline
methods. Error bar denoted standard deviation. To make fair
comparison, we only counted problems for which all four
methods found solutions in Fig. 4(a) and 4(b). In Fig. 4(c),
EDF and Tercio were excluded for the problem groups where
they found zero feasible solutions. Overall, RoboGNN and
Tercio achieved similar makespan score, with EDF being the
worst. For large problems, both RoboGNN and Tercio were
able to find better solutions than Gurobi.

C. Ablation Study

To show the necessity and benefit of incorporating edge
information into the GAT layer, we also trained and evaluated
a similar policy based on the original GAT models, using small
problems involving 2-robot teams. As a result, the trained
policy only solved 5.7% of the testing problems. This showed
the effectiveness of our adaptation in order to leverage graph
attention networks to automatically learn to coordinate robot
teams in complex scheduling environments.

VII. ROBOT DEMONSTRATION

We demonstrate our trained RoboGNN scheduler to coordi-
nate the work of a five-robot team in a simulated environment
for airplane fuselage construction, as shown in Fig. 5. The
problem consists of eighteen tasks located randomly among
5 locations. Besides respecting the temporal constraints that

Fig. 5. This figure depicts our demonstration of a 5-robot team completing
tasks for airplane fuselage assembly.

exist among the tasks, the scheduler has to make sure that the
same physical location can only be occupied by at most one
robot at any time to prevent collisions. The execution makes
use of the Robotarium, a remotely accessible swarm robotics
research testbed with GRITSBot X robots [32]. A video with
a detailed breakdown of the demonstration can be found at
http://tiny.cc/y3vgkz.

VIII. DISCUSSION

Combing the results presented in previous section, we
showed that the RoboGNN scheduler not only found signifi-
cantly more solutions than other heuristics but also achieved
high solution quality. Impressively, our network-based sched-
uler outperformed all baselines in terms of the proportion of
instances solved and the solution quality when problem size
scales up to 100 tasks for two- and three-robot teams. Our
method also outperforms all approximate solution techniques
for four- and five-robot teams at this scale while yielding
a 100× speedup over our exact baseline. Even though our
method constructs schedules under a deterministic setting,
this speedup allows us to re-schedule in a timely manner in
response to unexpected disturbance during execution. Further-
more, we can leverage the method from [25], which uses the
output schedule’s ordering constraints back into the original
STN—rather than using the output schedule itself—to preserve
a high degree of flexibility in dispatching the robots via the
modified STN. We also demonstrated our method on a multi-
robot testbed (Fig. 5). We summarize our contributions as
follows:

1) To our best knowledge, ours is the first to leverage
graph neural networks in solving STN-based scheduling
problems with spatial constraints. We extend the graph
attention network to deal with directed, weighted graphs
by incorporating edge weights during both attention
coefficient calculation and node feature aggregation. Our
work enables graph neural network to be applied to
STNs.

2) We propose a novel graph attention network-based
scheduler (RoboGNN) that is non-parametric in both the
number of tasks and the number of robots. Benefiting
from such scalable structure, the proposed RoboGNN
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scheduler can be trained via imitation learning on small
problems for which expert solution can be easily ob-
tained, and be applied in generating schedules for larger-
scale problems.

3) We conduct experiments evaluating the performance
of the proposed method, showing the superiority of
the trained RoboGNN scheduler—considering solution
quality, proportion of instances solve, and computation
time—vs. state-of-the-art methods.

IX. CONCLUSIONS

We presented a graph attention network framework to
automatically learn a scalable scheduling policy to coordinate
multi-robot teams of various sizes. By combining imitation
learning with graph attention network in a non-parametric
framework, we were able to obtain policy that generated fast,
near-optimal scheduling of robot teams. We demonstrated that
our network-based policy found significantly more solutions
over prior state-of-the-art methods in all testing scenarios.
Future research includes extending our work to allow schedul-
ing robots with different capabilities, transfer learning across
optimizing different objective functions, and deploying the
trained network in a real-world scenario.
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Y. Bengio, “Graph Attention Networks,” International Conference on
Learning Representations, 2018.

[6] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[7] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[8] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.
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