Stochastic Resource Optimization over Heterogeneous Graph Neural Networks
for Failure-Predictive Maintenance Scheduling
Supplementary Materials

AirME: Parameters and Additional Details
Aircraft Failure Model

Table 1 lists the hyper-parameters used for each aircraft
type in our experiments. Those values are picked empiri-
cally so that the resulted probabilistic failure models have
sufficiently different characteristics to test the heterogeneous
graph neural networks expressiveness. For all types, the us-
age input of first part is number of landings, and the rest
parts use flight hours as inputs. Additionally, we divide flight
hours by the value specified under “Hour Norm” before be-
ing used as input.

Additional Details

We present the parameters of AirME instances used in our
experiments. The values are picked empirically in consul-
tation with aerospace industry partners. The usage rate for
sampling a flying operation is 0.6 for fixed-wing aircraft and
0.3 for helicopters, assuming helicopters are less often used.
To support a heterogeneous fleet of aircraft, the hourly in-
come of a plane is drawn randomly, from Uniform(1, 20)
for fixed-wing aircraft and Uniform(1, 10) for helicopters.
For each environment instance, at t = 0, random initial us-
age data are generated for each plane and we set ~10% of
the planes to be broken.

Maintenance Duration The universal component is
drawn from Uniform(2, 8). The plane specific part is
computed as flight_hours/24 + number_of landings/6.
Penalty time for corrective maintenance is set to 12. Task
duration is rounded to integer.

Maintenance Cost The one-time fixed part is computed
as Uniform(0.1, 1)xhourly_income. The cost of labor is
computed as 2 X duration. Additional failure cost is set to
48.

Details of Baseline Methods
Heuristics Baselines

Random Scheduler At time ¢, the random baseline as-
signs each available crew a plane to start maintenance work
on that is randomly picked from all planes that are not under

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

maintenance (including placeholder plane #0 for “no op”) to
build w;.

Corrective Scheduler (Stenstrom et al. 2016) The cor-
rective scheduler only schedules corrective maintenance
tasks which address component failures that have occurred.
When there are multiple planes with component failures at ¢,
these planes are ranked into a priority queue based on hourly
income.

Condition-Based Scheduler (Yam et al. 2001)
Condition-based maintenance (CBM) has been shown
to improve system efficiency by reducing the number of
needed corrective maintenance tasks. Besides addressing
all planes with component failures, the condition-based
scheduler ranks the non-failure planes into anther priority
queue (e.g., based the flight hours or number of landings)
and assigns the rest of crew for conducting CBM for them.
A threshold, S, is set for planes without a failure to be
eligible to enter the priority queue. Being a measure to
balance plane availability and future failure risk, the choice
of 3. greatly affects the scheduler’s performance. To decide
the choice of 3., we test values from [0, 10, 20, 30, ..., 110,
120] for flight hours and [0, 1, 2, 3, ..., 11, 12] for number
of landings on small environment instances and pick the
best performing one. As a result, 5. = 40 for flight hours is
used to generate evaluation results for all objectives.

Periodic Scheduler (Ahmad and Kamaruddin 2012)
The periodic scheduler schedules regular occurring mainte-
nance tasks using a prescribed time interval, 3,. After 5,
amount of time has passed, the periodic scheduler assign
every available crew a plane for conducting maintenance.
Planes are ranked first by failure status and then by flight
hours. A periodic scheduler’s performance is closely related
to the choice of ,. Note that a periodic scheduler with
Bp = 1 is equivalent to a condition-based scheduler with
B = 0. We test values from [1, 2, 3, ..., 11, 12] for /3, on
small environment instances and pick the best performing
one. As a result, 3, = 6 is used to generate results for all
objectives.

Model-Based Scheduler

To construct a model-based scheduler, we augment the
condition-based scheduler by giving it access to the plane

Aircraft Type Number of Parts Scales Shapes Hour Norm
Fixed-Wing Aircraft 4 [15, 12,18, 16] [5.0,5.5,6.0, 6.5] 20
Helicopter 3 [8,7,5] [7,6,11] 15

Table 1: Hyper-parameters of Plane Failure Models

failure model used in the environment. In this case, non-
failure planes are ranked based on their truth failure prob-
ability used in the environment sampling process for next
time step. A threshold, ,, on failure probability is set for
planes to be eligible to enter the priority queue. We test var-
ious values for 3, on small environment instances and pick
the best performing one, 3, = 0.004.

Learning-Based Schedulers

To include RL-based baselines, we consider two methods
in prior works for resource scheduling and adapt them to
AirME.

DeepRM (Mao et al. 2016) DeepRM represents the cur-
rent allocation of resources as fix-sized tensors and uses
feed-forward neural network to learn a policy of fixed output
dimension. The input to the policy network is constructed by
concatenating the flattened features of all planes, crews and
state. To enable DeepRM to handle variable problem sizes,
we zero-pad the flattened plane- and crew-feature tensor to
contain the maximum number of planes and crews. The out-
put dimension of policy network is also set to the maximum
number of planes. When generating the decision probabil-
ity distribution, we mask out the unvalid planes (i.e., planes
already under repair) from the network output. We train sep-
arate DeepRM models for small, medium and large environ-
ments in AirME. The policy network consists of four fully-
connected layers, with hidden dimension of 64 for small,
128 for medium and large environments. DeepRM learns by
REINFORCE with step-based baselines.

Decima (Mao et al. 2019) Decima utilizes a scalable ar-
chitecture that combines a graph neural network to process
jobs/tasks and a separate policy network that makes deci-
sions triggered by scheduling events. In AirME, the graph
neural network used by Decima is a bipartite graph contain-
ing maintenance task nodes as children nodes and a global
state summary node as the parent node. Considering homo-
geneous crews, we model maintenance task nodes similarly
as the plane nodes used in HetGPO. Message passing in
Decima is conducted as Equation S1.

he=g(Y fhn)), (S

meN((s)

where g(-) and f(-) are non-linear transformations imple-
mented as neural networks. h,, are the input features of
maintenance tasks and hg are the global state embeddings.
In Decima, a scheduling event is triggered when a worker
(maintenance crew) becomes available. Decima’s separate
policy network computes a score ¢, = q(f(hm), hs) for
each candidate maintenance task m. ¢(-) is a score function
that takes as input the global state embeddings and trans-

formed task embeddings. Decima then uses a softmax oper-
ation over all the scores to compute the probability of select-
ing each task as Equation S2.

exp(qm)
m'eM exp(qm-) ’

where M is the set of all candiate tasks. Keeping consis-
tent with the original paper, we implement g(-), f(-) and q(-)
as separate neural networks in AirME, each consisting of
three fully-connected layers with ReLU activation and hid-
den dimension of 64. Decima is trained by REINFORCE
with step-based baselines.

p(m) = 5 (S2)

Generalizability of HetGPO on Stochastic
Resource Optimization Domains

Our research aims to develop a scalable, non-parametric RL
method for dynamic scheduling in stochastic resource opti-
mization environments. While the experimental results are
obtained in AirME, our HetGPO framework is not restricted
to aircraft maintenance scheduling.

The heterogenous graph is built by first modeling each
entity class of the domain as a unique node type and their
interactions as directed edges (i.e., the base graph) and then
adding “state summary” node and ‘“decision value” nodes.
While constructing the base graph depends on the specific
domain, the modeling is relatively straightforward and re-
quires little hand-engineering. The input node features are
merely the observables from the environment and do not re-
quire feature engineering.

Both the “state summary” and “decision value” nodes,
and the HetGPO training process are developed with the
mindset of a general graph-based policy learning algorithm
to solve a broader class of problems. Next, we demonstrate
how to use HetGPO on a similar domain: dynamic patient
admission scheduling in health care.

Patient Admission Scheduling The patient admission
scheduling (PAS) problem consists of assigning patients to
hospital resources (beds, rooms, nurses, etc) in such a way as
to maximize medical treatment effectiveness, management
efficiency, and patient comfort, while respecting the capacity
constraints and/or the gender policy (Gombolay et al. 2018).
When all admission times and length-of-stay are known in
advance, the problem can be solved just once for the whole
planning period. However, solving with this static setting
has little utility for most practical cases where patients may
arrive at unknown times and the treatment duration is also
stochastic. Such real world scenario can be formulated as
a class of predictive scheduling under uncertainty, in which
the schedule is adjusted in response to real-time events and
HetGPO is suitable to be deployed to learn robust schedul-
ing policies.

Figure S1: Metagraph of the heterogeneous graph built for
patient addmission scheduling problems.

Take patient admission for the delivery room as an exam-
ple, the base graph of the scenario can be built by modeling
nurses, beds and patients as different types of nodes, with
edges denoting their interaction. By adding the “state sum-
mary” and “decision value” nodes to the base graph, we ob-
tain the heterogeneous graph used by the scheduling policy
network of HetGPO, as shown in Figure S1. In addition to
the state summary node, a decision node now also connects
with a patient, a nurse and a bed to estimate the outcome
of admitting the selected patient. Then, Algorithm 1 can be
used to learn scheduling policies under the objective func-
tions defined for hospital scenarios.

Evaluation results with AirME instances showed the su-
periority of HetGPO across problem sizes and objective
functions over popular heuristics and learning-based meth-
ods. Therefore, we expect HetGPO to continue to work well
on similar stochastic resource optimization domains that re-
quire predictive scheduling efforts. In future work, we plan
to develop our approach for such a healthcare application.

